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S U M M A R Y  
A method of obtaining high frequency asymptotic expansions for time harmonic waves propagating in non uniform 
waveguides is presented. Both ordinary asymptotic expansions, which are not valid near turning points, and uniform 
expansions which are valid across turning points are presented for various types of boundary conditions. The cor- 
respondance betwee n these expansions and the asymptotic expansion of the exact solution of a "canonical problem" 
is shown. A numerical example demonstrating the usefulness of this method is presented. This paper is a sequel to 
reference [1]. 

I. Introduction 

In reference [1] which appeared in this journal, we presented a method for finding high frequency 
asymptotic expansions for time harmonic waves in various guiding structures. This paper is a 
sequel to [1], improving several of its results. The method consists of assuming a suitable 
"Ansatz" for the solution of Helmholtz's equation in certain "guiding" domains, subject to 
linear homogeneous boundary conditions at the boundaries of that domain. 

In Section 2 eqs. (2.1)-(2.3) the mathematical problem is stated. The requirement (2.3) is 
essential from both theoretical and practical considerations. From a practical point of view, 
if a waveguide is oversized, i.e. the crosssection dimensions are large compared to the wave- 
length 2, where 

2 = 2 n / K ,  (1.1) 

many modes will ,propagate. in that case the mode approach to the solution of the field is 
inferior to the ray approach [2]-[4]. The mode approach becomes preferable when the number 
of propagating modes is small, which is when the crosssection dimensions are of the order of 
wavelength. This relation is expressed by (2.3). From a theoretical point of view, the expansion 
in inverse powers of K which we assume in (2.8), (2.9 a, b) becomes meaningless if the expansion 
coefficients Ai and Bi (i=0, 1, 2, ...) are functions of some power of K. It is not hard to show 
that Ai and B~ will be 0 (K ~ if (2.3) is satisfied. After statement of the problem (which is more 
general than in [1]) the formal solution is obtained. Special cases of the general boundary 
conditions (2.2) are the Dirichlet condition (Zf-.oo) and the Neumann condition (Z~0) .  
In spite of being simpler, they pose a certain difficulty. This problem is discussed and solved 
in Section 3. 

The asymptotic solutions of [1] and of Sections 2 and 3 are non uniform or "ordinary", 
since they break down in the vicinity of turning points of the equations (which are the cut off 
points for some propagating mode). Following [5, 6], a uniform asymptotic expansion that 
is valid across turning points (or cut off points) is introduced in Section 4. 

It is generally hard to show that an assumed formal asymptotic series is indeed the asymptotic 
expansion of the solution of a given boundary value problem for partial differential equations. 
Only in very few special cases this has been done [6]. The usual way to gain confidence in 
formal asymptotic expansions is to apply them to the solution of "canonical problems" whose 

* This paper is based on a thesis submitted by the first author in partial fulfillment of the requirements for the degree 
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exact solution is known, and compare the asymptotic solution with the asymptotic expansion 
of the known exact solution. We have done that in Section 5. Finally, to show the usefulness 
of our method, we have calculated the first term of the asymptotic solution (both "ordinary" 
and "uniform") of an example which cannot be solved exactly in any known way. The results 
are given in Section 6. 

In this paper we deal with two dimensional problems only. This was done in order to facilitate 
the somewhat cumbersome calculations. Generalization of the results to three dimensions is 
not difficult, as was shown in [1]. 

2. Ordinary Asymptotic Expansion For Impedance Boundary Conditions 

We look for solutions to the following problem: 

[V2+K2n2(x)]U(X)=O X ~ R  1 , /./(x)EC l , ( I r a ( x ,  Y)), (2.1) 

where R1 is the region bounded by two given functions Y = H1 (x) and Y =//2(x) (See Fig. 1 on 
page 104). The boundary conditions are 

dU 
0~- + iKZj(x) U = 0 on Y-- Hi(x), j = 1, 2 .  (2.2) 

V 2 = ~2/ay2 + ~2/~X2 , 

and ~/~v stands for differentiation in the direction of the normal to H r. 
In order that R 1 be a "waveguide", H1 and H2 must not intersect, i.e.//1 >/42, In addition we 

require that 

sup (H1 - / /2 )  = O(K-1) .  (2.3) 
X 

Actually we assume that HI - Hz = K -  1 F (x). If H l - H2 = G (x; K -  1) we expand G in inverse 
powers of K and the problem is solved in the same way. Zj(x) are given functions, sometimes 
called "surface impedance". 

Eq. (2.2) can be rewritten as 

- Ox "ff~x + iKZr UDr = 0 on Y= Hi(x ) , j = 1, 2 ,  (2.4) 

where 

~  Dr(x)= / 1 + TSYxJ " 

We now introduce the following change of variables : 

K Y = y  ; K H  r = h  r ; U(x, Y ) = u ( x , y ) ,  R I ~ R .  (2.5) 

Under this change of variables our problem becomes 

L[u] = [02/OxZ+K28Z/OyZ+K2n2(x)]u = 0 ,  V(x, y ) e R  (2.6) 

u] dhr u 
L3y + iZrDr dx ~x = 0 on y = hi(x), j = 1, 2.  (2.7) 

We may assume now without loss of generality that the solution u of the boundary value 
problem (2.6) and (2.7) has the form 

u =  ul +u2 = {A s in[q (x ) ' ( y -h l ( x ) ) ]+  B s in[q(x ) ' (y -hz (x ) ) ]}  " e iK'~(x) �9 (2.8) 

We assume that each part of the sum (2.8) satisfies eq. (2.6). We denote for brevity: qSr= 
q (x ) (y -  h r (x)), j = 1, 2, and assume that A (x, y), B (x, y), in (2.8) have the following asymptotic 
expansion: 
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A(x, y) ,'~ Ao(x ) + ~ A,,(x, y)(iK)-" 
m=l 

B (x, y) ".~ B o (x) + ~ B,. (x, y)(iK) ?tl 

m = l  

with A~, Bte C: l = 0, 1, 2 . . . . .  
Evaluating the necessary derivatives appearing in (2.6), (2.7) we get" 

0u 
u~ = ~x = [ (d  sin r  + B sin 4)z)~ + iKa~ (A sin 41 + B sin 05z)] e~K~(~) 

91 

(2.9a) 

(2.9b) 

/ , IX X -~- 

~2 u 
Ox 2 = { - K z (a~) z [A sin 05, + B sin 052] + iK [2a~ (A sin 051 + B sin 05z)~ + 

+ o'~(A sin r + B  sin 052)~] +K~ A sin 051 + B  sin 052)x~} ei~(~). 

~U 
u, -= ay = [At sin qS, +B ,  sin ~o z +Aq(x) cos 051 +Bq(x) cos 052] ei~"(~) 

~2 u 

urr =-- OyZ - [Art sin Ct + Brr sin 052 "iV 2Arq(x) cos 05, + 

+ 2B~q (x) cos 052 - Aq z (x) sin 05, - Bq 2 (x) sin 05z] e'K'(~) �9 

The boundary value problem becomes: 

L[u] =e/K" [K 2 {[n2-(ax)Z-q2](Asin 05,+Bsin 052) + 

1 a ~ z  
1 0 (Ay sin2051) + (By sin 052) ~ + 

+ sin 051 0y sin 052 ~Y 

+ iK[Za~(A sin 05~+B sin 052)~+a~(A sin 05~+B sin q52)] + 

+ (A sin 05~+B sin 05~_)x~] = 0.  
. a  

Substituting (2.8) into (2.7) we get 

K2[(Ar sin 051+By sin 052)+q(A cos 051+B cos 052) + 

(2.10) 

dhj . 
+ iZjDj(A sin 05~ + B  sin 05z)] - iKax  -~x (A sin q5 1 + B  sin 052) + 

dhj (A sin r  + B  sin r = 0, on y = h~(x) 
dx 

j = 1, 2. (2.11) 

We use (2.9) in (2.10) and (2.1 1), and equate separately to zero the coefficients of each power of 
K. Equating to zero the coefficient of K 2 in (2.10) yields 

[n2(x)-(a~) 2 -qZ(x)]  (A sin 051 + B  sin ~b2)= 0,  

since A r and B r are O(K-1). Thus, since (.4 sin 05, + B  sin 052)~0, 

(a~)2 = n 2 _q2 ~ N 2 " (2.12a) 

From eq. (2.11) we get similarly 

l, Ao+f lB  0 = 0 for y = h,(x) 
and 

12Ao+f2B 0 = 0 for y = h2(x) 
where 
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11 = q cos Ox+iZ1D1 sin ~b 1 , f l  = q cos ~)2q-iZ1D1 sin q52 

12 = q cos c~l+iZ2D 2 sin 4)1, f2 = q cos 02+iZ2D2 sin q~2. 

Hence 

12 f2 0 ' 

The last relation implies that the determinant of the matrix is equal to zero : 

( 11 f l )  = 0.  (2.13b) 
M = d e t  12 f2 

The form of 11, 12, fl, f2 on the boundaries is seen to be : 

on y = hi (x) 

11 --- q(x), fl(x) = q(x) cos q(x)7+iZ, Ol sin q(x)7 

on y = h 2 (X) 
12 -= q(x)(h2-hl)-iZ2Oa sin q(x)?, f2 = q(x), 

where y (x)-= hi (x ) -  h2 (x). 
The determinant (2.13) may be solved, yielding 

q2_Z1Z2D1D 2 
i'~(x) ZI DI - Z2D2 .= -[q(x) y(x) ] Got [q(x)~(x)] .  (2.13C) 

Note that D~= 1 + O(K-2), compare with (2.3). Thus for purposes of calculating Ao, A1, 
Bo, B~ only, we may take in (2.13a) D s = 1, j = 1, 2. Eq. (2.13c) is a transcendental equation for 
the determination ofq (x) : D j, Z s, hj ( /= 1, 2) are given functions ofx. Solving (2.13c) numerically 
on a set of points x = {x~}, we determine from it the given eigenvalues qi = qi (xv) (i = 1, 2, 3...). 

Once the eigenvalues q~ are found, they are substituted back into eq. (2.12), yielding a "modal 
eiconal equation" for each eigenvalue. The "equivalent refractive index" N is different for each 
mode. Obviously N 2 (x) is positive only for a finite set of eigenvalues q~ (i = 1, 2 . . . . .  m). These 
are the propagating modes. All other modes will yield an imaginary a and correspond to 
evanescent modes. 

The solution of (2.12) is standard. In two dimensions we get immediately : 

X os(x ) = [nZ(x)-qs(x)]~dx j = 1, 2, ..., m. (2.12b) 
XO 

In the special case when h~ ( x ) = -  hz(x)>0, similar results were obtained [1]. However, 
(2.13c) is replaced by a simpler relation: (Th)tan(yh)=DZh, where h=--ha and 7(x)=4)(x)/y. 

The equations for the determination of the coefficients Am and B,, are obtained by equating 
to zero the coefficients of K" (n = 1, 0, - 1, - 2 . . . .  ). When we equate to zero the coefficient of 
K t in (2.10) we get: 

1 0 (Air sinZqS1)= 2o~[Ao(x ) sin ~bl]~+~r~Ao(x ) sin qbl, (2.14a) 
sin ~bl 0y 

1 
sin ~b z Oy (Bly sin z q52)= 2o-~ [Bo (x) sin ~b2]~+ a ~ B o  (x) sin q52 . (2.14b) 

The separation between A,, and Bm is possible since L[ul] = 0  and L[uz] = 0 separately (see 
eq. (2.8)). 

Multiplying (2.14a) and (2.14b) by sin 051 and sin 052 respectively, and integrating (2.14a) 
f r o m  y to h t ( x  ) and (2.14b) from h2(x) to y, we get: 
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Alr(x' Y)=�89 sin-2 ~ //ax~A~ +2a~A~ a~A~ "~xx) r[(hl(X)_y)+ sin 2q5,]  (2.15a) 
2q (x) _J 

sin 2~b2~ (2.15b) BIy(X' Y)= -�89 sin-2th2 ( axxB~ 2~xB~176 ~--x) [ (h2(x)-y) + 2 - ~ J  " 

It can be easily seen (by L'Hospital's Rule) that Air is regular as y-*h1, and Blr is regular as 
y~h2. We integrate (2.15a, b) indefinitely in y, to obtain: 

Al(x, y)= Fo (x, y)+ f~ (x) (2.16a) 

B 1 (x, y)= Go(x, y)+ #l (x) (2.16b) 

where 91 (x) and fx (x) are still unknown functions in x. Go and Fo are given by: 

I q ol Fo (x, y) = ~q [y-h,(x)] " xxAo + 2a, Ao, cot ~b, + 

+ axAo Vq, '-- (y-h,  (x))2-hlx ( y - h  1 (x))] , (2.17a) Lzq d 

Go(x, y) = - 2q [y-h2(x)] " ~xSo+ 2a~Sox- -- a~B cot q5 2 + q 

+ axBoI~--~(y-h2(x))2-h2x(y-hz(x)) 1 . (2.17b) 

Hence A1 and B l could be calculated if we know Ao, Bo, fl, 91 and a(x). Each eigenvalue qj 
corresponds to a different aj and respectively to different Aoj, Bo~, A~j and Blj. The whole 
asymptotic solution up to some order in K will be obtained by summing all the propagating 
modes. 

To obtain Ao (x) and Bo (x) we equate to zero the coefficient of K ~ in (2.11). We get: 

h q Blr(x, hl)+Bl(x, hl)[qcot(qy)+iZ1D1]+Al(X, 1 ) ~  + trxhlxBo(x)=O, (2.18a) 

Air(X, h2)+Al(x, h2)[q cot ( - W ) +  iZzD2] + B1 (x, h2) q sin(-qT) + axh2xAo(x) = O. 
(2.18b) 

Using Eq. (2.13a) we have an additional relation between Ao and Bo : 

Ao (x) iZ 1 91 
- sin(w ) . (2.19) Bo (x) COS (qy) q 

NOW we substitute Bar, B1, A~y, Aa, as given by (2.15) and (2.16), into (2.18a, b). To substitute 
Aox and Box we take the x derivative in (2.19). Eq. (2.18), (2.19) and its derivative are in the form : 

Ao(x)=~(x)Bo(x) and A'o(X)=a'(x)Bo+a(x)B'o(X) 

al Bo +blB'o+Clgl +dl Ao +el A'o+rlfl = 0 
a2Bo+b2B'o+C2gl+d2Ao+e2A'o+r2fl = 0 (2.20) 

where a j, b j, c j, d j, e j, rj (j = 1, 2) are known functions of x [see details in Appendix A]. Using 
(2.13), Eqs. (2.20) are solvable and we get ordinary differential equation for B0(x): 

d 
dx Bo (x) = Bo (x) D (x) (2.21) 

where D(x) is given in Appendix A. Solving (2.21) we get from (2.19) Ao(x). Thus Ao(x ) and 
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Bo(x) are known. To find the further expansion coefficients Am, Bm (m=2, 2 ...) we have to 
equate to zero the coefficients of K -m (m=0, 1 . . . .  ) in (2.10), (2.11) and use Am-1, Am-2 and 
Bin- 1, Bin- 2. 

Once Ao and Bo are known we have B 1 and A1 from eqs. (2.17a, b). However, the additive 
functions 91 and f l  are still unknown and have to found from the boundary conditions on 
A2, B2. 

3. Diriehlet Boundary Condition 

We define a similar problem to that of Section 2 but with the condition u = 0, i.e. Dirichlet's 
conditions on the boundaries OR. The asymptotic expansion of an exact solution solved in 
Section 5 serves as a model for an Ansatz. We show that the choice of a suitable Ansatz is not 
obvious. We may be able to find the first term in the asymptotic series, but higher terms turn 
out not to be twice differentiable and therefore do not satisfy the P.D.E. itself, and constitute 
rather a weak solution. This may indicate a coupling between the modes, a well known phe- 
nomena in wave guides whenever the surfaces are not two parallel planes. For the sake of 
simplicity we take Hz (x)=O, and n(x) = 1. We introduce the change of scale as in (2.5), and get 

02u KZO[ff~yZ 1] L [ u ] = ~ x 2 +  + u = 0 ,  - o o < x < o e ,  O<=y<h(x), (3.1) 

and 
u(x, O) = u(x, h(x) ) = 0.  (3.2) 

We assume first a solution of the form 

(nny~ elK<x) n = 1, 2 ... (3.3) u (x, y) = A (x, y; K) sin ~h (x)) 

This form automatically satisfies the boundary conditions (3.2), thus we have only to take care 
of the P.D.E. (3.1). 

We assume the same asymptotic expansion for A as in Section 2, namely: 

A(x, y; K )~  Ao(x ) + fi Am(x, y),(iK) -m , (3.4) 
m=l  

with 
Aj~C 2, j = 0 , 1 , 2 , . . . .  

Using (3.3) and (3.4) in (3.1) we get a recursive set of differential equations: 

nrc ,~2 _ N 2 (x) n = 1, 2, . p (3.5) 
= 1 - ' " 

1 . ~ (A,, sin24~)= 2a~(A o sin qS)x+a~Ao sin q~ (3.6) 
sin 4' 0y 

1 . 0_ (amy sin 2 ~b)= 2a~(A,,_l sin ~b), + a~,Am-1 sin q~ + (Am-2 sin qS)~ (3.7) 
sin q5 dy 

where 
llTi 

~ -= ~(x) y , m > 2 . 

p is the number of propagating modes, i.e. for 1 < n < p, N (x) is real. Solution of equation (3.5) 
is standard (see eq. (2.12)). To solve (3.6) we note that (3.6) can be written as follows" 

0y (Air sin2q~) = (2axAox+axxAo+a~Ao dx) sin2~b " (3.8) 

This equation can be integrated with respect to y between y = 0 and y = h (x). Since sin ~b---0 
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at both ends, we get: 

2axAo~h + ax~Aoh + axAoh~ = 0.  (3.9) 

The solution of equation (3.9) is : 

[-N (x~176 ~ (3.10) 
Ao(x) = Ao(xo) [ N(x)h(x) J ' 

where N (x) is defined by eq. (3.5). 
The fact that our analysis fails near the cut off of a mode is seen by the fact that N--,0, at 

such points. (In the problem of Section 2 this is not so obvious, and some calculations have to be 
done to see explicitly the manner in which A0 tends to infinity in the vicinity of the cut off of a 
mode). 

Having calculated Ao, we return to (3.6) whose right-hand side is now a known function. In 
order to calculate A1 we rewrite (3.8) as follows 

1 
(Z sin 2 (ay)) = F(x, y). (3.11) 

sin (ay) dy 

The right-hand side of (3.11) is a known function, with Z = A  ly and a = mz/h (x). 
Eq. (3.11) may be integrated directly; 

1 
f '  F(y') sin(ay')dy' . Z = sin2(ay-------- ~ ro 

(3.12) 

From (3.6) we see that F is of the form F = l sin (ay)+ ry cos (ay) thus (3.12) can be calculated 
explicitly, yielding 

1 {~ f sin (2ay)~ rEsin(2ay ) ~ }  
Z = sin2(ay ) Y-Yo) ia  -J + 4a I_ 2a y cos(2ay , (3.13) 

with 1 and r known functions of x. 
For the m-th mode, the sine function becomes zero (m+ 1) times in our domain. Aly becomes 

infinitely large there. With the help of y0, a constant of integration, we may exclude one "infinity 
point" from A i r  All we can do here, is to build a piece-wise continuous Aly, and A 1 will be piece 
wise differentiable. There are infinity many ways to do it. One way may be to choose the dis- 
continuity points at the zeroes of cos (ay), that is halfways between the j t h  and the ( j+ 1)th, 
(j = 1 . . . .  m + 1) zero of sin ~b. 

A1 (x, y) as obtained above violates the assumption that Af t  C2u We may try, therefore, 
to modify our Ansatz (3.3) as follows : 

(nny ~ 
u(x, y) = Ao(x ) sin ~h(x)/ + A(x, y; K) e ir*~) (3.14) 

where Ao(x) is given by (3.10) and A has the asymptotic expansion: 

A(x, y; K) ~ ~ Aj(x,y)(iK) - j ,  
j = l  

with 
Aje C 2 and Aj(x, O) = Aj(x, h(x)) = 0 .  (3.15) 

The boundary conditions are satisfied automatically because of (3.15) and the recursive set 
of equations is : 

2 1 _ ( n r c ~  2 
o'~= \ n ~ / ]  = 1 - q 2 ( x ) '  (3.17a) 

Alrr+q2A1 = 2ax(A o sin ~)~+a~,A o sin qS, (3.17b) 

A2rr+q2Az = - (2a~A~x+a~Aa)+(Ao sin qS)~, etc. (3.17c) 
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Equations (3.17b) with boundary conditions (3.15) cannot be satisfied unless A~-= 0. This 
statement may be easily verified. The Ansatz (3.14) which is quite general is not suited well to 
solve the stated problem. The "weak" solution obtained from (3.13) indicates most probably 
that the modes (both propagating and evanescent) are coupled in such a way as to satisfy the 
specified boundary conditions. Since we expanded the solution in an asymptotic series for 
K--* 0% the lowest order approximation is given by neglecting Aj forj  > 1. Up to this order of 
approximation the modes appear uncoupled. 

4.  U n i f o r m  A s y m p t o t i c  E x p a n s i o n s  in  T h i n  D o m a i n s  

The two solutions obtained in Sections 2 and 3 cease to exist in the vicinity of the cut off points 
of a mode. Therefore to obtain asymptotic solutions valid in the whole region under consider- 
ation, it is necessary to introduce uniform asymptotic expansions. (u. a. e.) [5, 6]. 

First we consider the Dirichlet problem (Section 3). Instead of (3.3), we assume a solution 
of the form : 

K -C(x, y; K)A'i[-K~p(x)] (4.1) u(x, y) = sin !th(x) / 

where Ai is the Airy function which satisfies the differential equation 

A'[ (x)- xA,(x) = 0. (4.2) 

Ai and A'i are linearly independent. 
We assume that B and C have the following asymptotic expansions: 

+ Y, -2j 
j=l 

C(x, y; K)~ ~ C2j+,(x, y)/~-{~j+l~ 
j=0 

(We will discuss this choice of Ansatz subsequently). 
We need the following derivatives: (e'---ex, A'i = (8/Sx)Ai) 

ux = (B sin (p)~A,-K~p~B sin q~A'~+K-+(C sin dp)~A'i+KppxC sin ~bA~ 

U~x = -K2pp~B sin CA~ +2Kpp~(C sin r i + K(pp~)~ C sin CA~ + (B sin qS)~A~+ 

-K~ pp~ C sin r p~(B sin r p~B sin CA~+ 

+ K-~(C sin (o)x~A'~ 

(4.3a) 

(4.3b) 

n ~  _ 1 , ~ mz 
uy = By sin q~A~ + h ~  B cos OAi+K ~Cy sin dPAi+K-~ ~(x) C cos OA'~ 

Uyy= B ,  s i n 4 + 2 h ~ B y c o S q S -  B s i n 4  Ai+ 

+ K -  ~ y, s i n 4 + 2 h ~ C y c o s q S -  - -  Csinq5 A) 

where 
ng  

Hence the operator takes the form: 
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1 8 (By sin 2 ~b)} 

+K [2pp~(C sin 4)x+(Opx)~C sin qS] + (B sin qS)x~l + 
d 

I 1 -  ( h )  -PP~] Csmq~+sinl4,~y~ (C'sinZ~b)} + W'[ 

- K[2p~(B sin ~)x+p~xB sin ~b] + (C sin q~)'~/= 0.  (4.4) 
J 

Using (4.3a, b) in (4.4) and equating to zero coefficients of powers of K, we get a recursive set 
of equations: 

/ ~2= NZ.(x) (4.5) 
~g 

= 1 - t h ( x ) )  

1 

sin q$ #y (Cry sin2q$) = 2px(Bo sin 4))~+p~B o sin q$, (4.6) 

etc. 

The solution of (4.5) is: 

t O,(x) = l - L h ~ J  ~ dx' , n= l, ... p. (4.7) 
X 0 

Again, p is the number of propagating modes, i.e. for 1 <_ n<_ p p,(x) is real. Although p,(x) 
becomes zero at cut-off point of the n-th mode (x~), p,~ (x,~) r 0. Indeed we have at x = x~, 

dx \ dx J ' 

dEp, 3 d (dUZ] + (4.8) 

dx 2 5 dx \ dx / 

x~ may be obtained by solving the equation 

N,(x) = 0 or h(x) = nn. (4.9) 

The relations (4.8) follow immediately by expanding p (x) in equation (4.5) in a power series 
about the cut-off point and using p,(x~,)= 0. We see that although equation (4.5) is analogous 
to the eiconal equation (3.5), there is an important difference: unlike ax(x), px does not vanish 
at cut-offpoints, indicating a regular behaviour of Bo (x) there. Indeed, to get B o (x) we multiply 
(4.6) by sin ~b and integrate it from y = 0  to y=h(x). Since sin ~b=0 at y=h we get 

0 = 2p~Boxh+p~xBoh+pxBohx, (4.10) 

therefore 

Bo(x) = Bo(xo) ~ - ~ - j  . (4.11) 

Thus, by (4.8), Bo (x) is regular at the cut-off point. Far away from such points the first term of 
the uniform asymptotic solution behaves like the first term of the ordinary asymptotic solution. 
One may see this by taking the first term in the asymptotic expansion of the Airy function far 
from the cut-off point. This will be shown in Appendix B and explains why Co (x) has to be 
taken identically equal to zero. As a consequence the specific form (4, 3a, b) of the asymptotic 
expansion is assumed. 

The next term in the expansion is Ca (x, y). We see that eq. (4.6) is exactly the same as eq. (3.6) 
and we shall obtain the same kind of"weak" solution. We may try to change the Ansatz (4.1) 
to be: 
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u = B(x, y, K)AI(-K~p)+K -+. C(x, y, K)A'i(-K~p). (4.12) 

We assume again that B and C have the same asymptotic expansions (4.3a) and (4.3b) with 

C2j+ 1 (0, x) = C2j+ 1 (h, x)=  B2j(0, x )=  Bzj(h, x)=  0. (4.13) 

Bo(x ) is assumed to be given by (4.11). 
Thus (4.4) takes now the form: 

L[u]= Ai [K2 { I 1 -  I h ) 2  - pp~ Bo sin (o+(1-pp2)B+ B,y} 

+ K{2pp, C~+(pp~),~C} +(Bo sin qS+B)~[ + 
(4.14) - . I  

+ [K {2p (So sin O+B)  

+ p~(Bo sin (o+B)}+Cx~] = O. 

The recursive set of equations is 

{ n~ .]2= 1--q2(x), 

C,yy + q2 (x) C, = 2p~ (Bo sin ~)~ + Pxx (Bo sin q~), (4.15) 

B2yy + q2 (x)Bz = - 2ppx Ct~-(pp~,)~C 1-(B o sin q~)x~, 

etc. 

The equation for C1 has the same form as that of (3.17b) therefore we encounter here the 
same problem as in Section 3:C1 (x, y ) -0 ,  and from (4.6) we may obtain a "weak" uniform 
solution. The problem indicates once again coupling between modes in order to satisfy the 
specified boundary conditions. 

Taking cos ~ instead of sin ~b we may deal in exactly the same way with Neumann boundary 
conditions. 

The "impedance" boundary conditions problem (eqs. (2.1) (2.2)) can also be solved by a 
uniform asymptotic expansion. 

The proposed form of the solution is: 

= 2 -~ CAi(-K~P)] (4.16) u sin~l[BA~(_K~p)+K 3. , 
+ sin ~2 [DAi(-K~P)+ K-+" EA'i(-K~P)], 

hence 
u = [B sin q~ + D sin q~2] Ai ( -  K -~ p) + K-  ~ [C sin q~x + E sin q~2] A'i(- K ~ p), 

where 
~pa(x, y) =- q(x)(y-hl(x)), ~b2(x, Y) =- q(x)(y-h2(x)). 

We assume that B, C, D, E have the following asymptotic expansions: 

B ( x , y ; K ) -  So(x)+ ~ B2~(x,y)K -2j ; 
j=l 

D(x, y; K) ~ Do(x) + ~ D2j(x,y)K -2j 
j=o (4.17) 

C(x, y; K) ~ ~ C2j+l(x,y)K -~2j+1) 
j=o 

E(x,y;/<) ~ Z l (x, y) /< - 2j+I  j=O 

Substituting (4.16) into the operator 
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+ K2 ~y2 + K u = 0 ,  

we have: 

II/ L[u] = A, K 2 1-q2-pp2)(B sin 4~2+D sin ~b2) + sin r ~y + (Cr sin q~) 

1 a (Drsinq52O + K[2pp~(Csin4)~+Esin(02)x + 
+ sin r 0y 

+ (PPx)~ (C sin qS~ + E sin qSz)] + (B sin qS~ + D sin ~b2)~ / + 

{ I( 1 ~ (C, sin2q~l ) + K-~A'i K 2 1-q2-pp2)(C sin q51+E sin q~2) + sin q51 ~y 

1 g (E r sin 2 qSz) 1 - K [2p~(B sin ~b 2 + D sin q52) ~ 
+ sin q52 8y 

+ px~(B sin ~bl+D sin ~b2)]+(C sin q~t+E sin q~2):,~} = 0.  

Using (4.17) we get a recursive set of equations: 

pp2 = 1 -- qZ (x) , 

t O (C~y sin2q~l) = 2p:,(Bo sin 4)~)x+p~Bo sin 4)1, 
sin ~1 Oy 

1 0 (Ely sin z 4'2)= 2p,,(Do sin q52) ~ + PxxDo sin q5 z , 
sin q52 ~y 

1 ~ (Bzy sin2~bl) = -2pp. (C1 sin q~l)~-(pp~,)~,C1 sin 4 h - B o  sin q~l 
sin ~bl Oy 

1 ~ (D2r sin2q~z) = -2pp~(E~ sin 4)z):,-(PP~)~E1 sin 4~z-Do sin ~b2, 
sin ~b 2 ~y 

etc. 

Substituting (4.16) in the boundary conditions (2.7) we get: 

Ai(-K~p) IK2 [(By sin 4)I+Dy sin (%+Bq cos (aa+Dq cos ~bz) + 

+ iZ/bj(B sin thl + D sin ~b2)]- Kpp~ ~ (C sin q51 + E sin q52) + 

(4.1.8) 

dhJdx (B sin q51 + D  sin q52)~} + (4.19) 

+ A'i ( - K -~ p) K-  ~ {K 2 [ (C r sin q~ 1 + Ey sin q5 2 nt- Cq cos ~b 1 + Eq cos q52) + 

+ iZj%(C sin ~b~ + E sin ~b2)] + Kp~ ddh~i x (B sin ~b 1 + D sin q52) + 

dh~ ) 
(C sin 01 + E  sin q~2)~ = 0 j = 1, 2 

dx where J 

has been used instead of D~ in (2.2) (j = 1, 2) to prevent confusion with D (x, y; K) used here. 
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Using (4.17) we get a recursive set of equations. Equating to zero the coefficient o fK  2 we get : 

= M = (4.20) �9 0 w h e r e  : sin q7 / 
Do dos q~-i~)2Z 2 , 1 / 

q 

and y - h ~ - h  2. 
Thus det (M) = 0, which leads to 

q2_ ~1 ~2Z1 Z2 
- [7(x)q(x)]'[cot(q7)] = iv ~ IZ I_c~2Zz  (4.21) 

exactly as in (2.14). 
For lower powers of K we have 

, dh~ 
Ear sin q~ + C 1 q + E 1 q cos qy + i(Z a 4~ x E 1 sin qT) + P~ ~ Do sin q7 = 0 

on y = hi (x) 

- C l r  sinqT+C~q cosqV+Elq-i(Zzq)zC1 sinqT)-px ~hxz Bo sinq7 = 0 

on y = h 2 ( x  ). (4.22) 

Acomparisonofthefirst two equationsin(4.18)with(2.14a, b)and equations(4.22)with (2.18a, b) 
show that these equations have exactly the same form, and the solution obtained there may be 
immediately used here. The difference is that in the uniform expansion formulas Px appears, 
which is finite at cut-off points, while in the ordinary asymptotic expansion ax appears, which 
become zero at these points. Thus, our expansion is indeed uniform in the sense that it is regular 
across the turning point (or cut off point). 

It may be interesting to make some remarks about the structure of our Ansatz (4.16) and 
(4.12). In general both have the same structure; the Airy function is multiplied by a series of 
even powers of K plus its derivative multiplied by a series of odd powers of K. For problems in 
thin domains, this structure seems to be suited well to remove the singularities of the ordinary 
asymptotic expansion. This approach could in all probability be used for vector Helmholtz 
equation as well. Such equations appear in problems of electromagnetic and elastic wave 
propagation. 

Comparing Ansatz (2.8) with (4.16) we see at once that Ao eir" may be compared with BoAi- 
( - K ~ p ) ,  while A s e iK~ has to be compared with CI 'A ' i ( -K~p)  and so on. Eq. (4.18) demon- 
strates the coupling that exists between the coefficients Bm and C,, (and also D,, and E,,). 

5. The Canonical Problem 

By a "canonical problem" we understand a simple problem belonging to the class of problems 
we are dealing with, to which an exact solution can be found. We shall compare the asymptotic 
expansion of the exact solution with the expansions we obtained in Sections 3, 4. This compari- 
son will serve as a check for the Ansatz we use for all the problems belonging to the same class 
and to which we do not have exact solutions�9 As a matter of fact, the asymptotic expansion of 
exact solutions often serve as a motivation for the Ansatz used for wider classes of problems. 

We choose the following canonical problem: 

(V2+K2)u = 0 in D (5.1) 

u = 0  on ~D 

where Vz--QZ/3xZ+~Z/~Y 2, and the region D is defined by 0<  x <  ~ ,  0_< Y_< H(x), with 
H(x) = ~x, a > 0 (see Fig. 2 on page 104). According to our assumptions of "thin domain" 

= a'/K, e' = const. 
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The exact solution is 

u = AH~a)(Kr) sin (vO) (5.2) 

where 0o is measured in radians, tan 0o = ~, and v = mz/Oo. 
The asymptotic expansion we are looking for is to be valid far from the origin. Since we are 

working in thin domains the angle of inclination has to be small. Therefore we may assume: 

00 -- c~ and x ~>,1 hence r --- x .  (5.4) 

The first term in the asymptotic expansion of H~l)(x) for ( x -  v) 3 >> x is [8] 

\ztx/ , ~ ) " e x p i { I ( 1  ~2)~ x v c ~  4 } + O ( 1 ) "  (5.5, 

For ( x -  v) 3 = 0 (x) a uniform asymptotic expansion has to be used. 0 is real and positive hence: 
cos- t y =  - i cosh y -  1 = _ i In [y+  (y2 _ 1)~]. Thus 

H ~ ( K x ' ~ ( 2 ) ~ e x p ( - i 4 ) ( K x ' - ~ [  1 (K-~)2-]- ' 

V V 2 
- -  - + 0 1  ,q::_.l. (5.6) 1)a-] "exp{ iKxf  l-(v~2]�89 J , 

Using the results of Section 3 we compute the first term in the expansion for the problem 
defined by (5.1). On the boundary Y=H(x)=ex becomes y=h(x)=K.ex. Hence by (3.5) we 
have 

1 
tr(x) = fXN(x')dx'= -K{[(Kx)2-v2]~-v2tan-lI(K-~)~-1] ~} (5.7) 

where 

F (~ ~ ?  I1 (~-~l ~ N = t_ 1 - \K~x] J - \Kx]  J 

To get Ao(x), we use (3.10) and obtain: 

~ 2 7  -* A~ = c~ 1 - (  K x / A  

Since, by (5.4) 

0 _ ~  y Kx 
we get 

nzcy ,.~ n~O 
sin h ~  = sin 0--o-" 

For  a more compact expression of e iK'(x) we use the identity 

e  It' x' 1) 1 
thus 

u , , ,[Ao(x)+O(1)] .s infnnO) 
kOo / 

x e x p [ i K x ( 1 - - -  

Choosing the constant in 

(-4) Ao(x) as - exp i 
7Z 

(5.8) 

(5.9) 

(5.1o) 

§ ~ l  v - - -  ~ 

Journal of Engineering Math., VoL 6 (I972) 89 108 



102 P. Rosenau, B. Rulf 

we see immediately the identity of (5.11) with (5.6) multiplied by sin (nnO/Oo). Hence we estab- 
lished the asymptotic correspondence of the first term in the exact solution with the first term 
in our Ansatz. 

The same correspondence can be found between the first term of the uniform asymptotic 
expansion of the exact solution (5.2) and the first term calculated by the method of Section 4. 
We shall give the details in Appendix B. 

6. Numerical Results 

We demonstrate the method presented in this work, with a numerical example. For the sake 
of simplicity we solve a problem with Dirichlet's boundary conditions. The domain with 
y = 0  and y=h(x), where 

10 for x < 0  

h(x) = 10e -x2 for 0_<x_< 1 (6.1) 

[10/e for x >  1 

Using the formulas obtained in Sections 3 and 4, we compute the first term in the ordinary 
asymptotic expansion and in the uniform asymptotic expansion in the interval (0.1) and com- 
pare their behaviour. From (3.5) it is easily seen that there are at most three propagating modes. 
The second and the third mode have their turning points in the discussed interval. The turning 
point of each mode is computed by equating to zero the right hand side of (3.5). Ao(x) as given 

10.00 

0 . 0 0  I I I I I I I I I 
).00 

X 

Figure A. The surface y=h(x )  (Equation (6.1)). 

2.00 

0 ,eC 

I I I 

2 

I 
1.00 

0.0( I I I I I I I 
i.O0 1.12 

• 
Figure B. The zero order coefficient Ao(x ) of the propagating modes (ordinary expansion). 
The dependence on sin ~b is not shown in the following figures. 
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by (3.10) breaks down at the turning points while the first term of the uniform expansion behaves 
smoothly. 

Since the terms of the asymptotic expansion are defined up to a multiplicative constant, the 
figures presented have different y scales. 

2.40 

- -  I s t  m o d e  

. . . .  2rid m o d e  

[ ! . . . . .  3 r d  m o d e  

, i  / / / ~ 
�9 P . f "  ~ . ~  f ~  i I /  

= ',~',A,r~A ,'~ A,, A' ,,A ,'a A,' A A A A / 

V Y,,,'V,,.,,V V.,V \ / \  / \ / \ 1 

- I . ~  0 . 0 0  I I I I I I I I I I 1.00 
X 

Figure C. The zero order approximation of the three propagating modes (ordinary expansion)�9 
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- 0 1 6  I i i 0.00 1.12 X 
Figure D. The zero order approximation of the 1st propagating mode (uniform expansion). 
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Figure E. The zero order approximation of the 2nd propagating mode (uniform expansion). 
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Figure F. The zero order approximation of the 3rd propagating mode (uniform expansion). 
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Appendix A 

We calculate now explicitly Ao(x) and Bo(x ) of Section 2. From eqs. (2.19a, b) we have 

A~ - e(x)=  - cos(qy) iZ1D1 sin(qT), (A1) 
Bo (x) q 

We can solve the set of equations (2.20) observing that 

rl' cl 1 det = 0.  (A2) 
r2, c2 

One may see this by comparing it with the matrix M in (2.13). We obtain: 

D (x) B o (x)+ B~ (x) = 0 (A3) 

where 
D(x) --- (al+dle+a' e l )Cz-Cl(az+d2~+a'  e2) 

(hl+~el)C2_Cl(b2+ae2) , (A4) 
and 

d a(x) Hence C(t ~ ~X x 

 otx, = exp E I oo'x'   ] ,A t 
The coefficients ai, bi etc. which appear in eq. (2.20) are 

1 I a' at(x) = a'h'~ 2 sin 2 (qT) a't+a'hl + --q (qth~-(h2q)') c~ + 

a' q' V!a" q -q '  a t) 
2q7 s in (2qy) ] -  ~(qcot(q?)-iZ, D1) L 2q 2 cot(qT) + 

- a '  a'7 [q cot(qT)+iZ1D1] cot (qT) (17) b l ( x ) -  sin2(q7) q 

el (x) = q cot (q~)+ iz, o1 (AS) 

1 (  q' ,) 1 
dx(x) = ~q a" - -- a (19) 

q sin (qT) 
O- t 

e 1 (x) - q sin (qY~ (A10) 

a2(x) = -d~(x) (All)  

b2(x) = -e~(x) (112) 

c2(x) - q sin (q7) {A13) 

1 [ ~' a'q' 
d 2 (x) = a 'h l  2 sin 2 (qT) L~r" + o-' hi + q (h2 - (hi q)') cos (2q?) + 2~ f sin (2q? ,] 

+'(-qc~ q(~2--q )1 L 2q 2 . cot(qT) - o-' 7+h  (A14) 
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--a' a'Y [--q cot(qT) + iZ2D2] cot(q~;) (A15) e z (x) = sin2 (qy) q 

q (A16) r 1 (x) = sin (qv) 

r 2 (x) = - q cot (qy) + iZ2 O2. (A17) 

Appendix B 

We showed in Section 5 that the asymptotic expansion of the exact solution of our canonical 
problem agrees with the asymptotic solution of that problem. In this appendix we shall show 
that the uniform asymptotic expansion of the exact solution agrees with the uniform asymptotic 
procedure of Section 5. The exact solution exists in the whole domain but, as already stated, 
whenever we are in the neighborhood of the turning point, our ordinary expansion breaks 
down and we have to use a uniform asymptotic expansion. The (u.a.e.) of H~ a) is [8] : 

H~X)(vz) ~ 2e_~i/3 { 44 .~ ~" ~ Ai(e2~i/~ ~ ~) } 
 l-zV t + . . . .  (B.1) 

where 
~r = In 1+(1-zZ) ~ (1-z2) r , (B.2a) 

Z 

,z-lt - os ,(z), 
and the branches being chosen so that ~ is real when z > 0. 

We take z = Kx/v and it is easily seen that for (B.2a) we get 
• 1 _ 

r  __{~ [((~_x) 2__ 1)= tan_1 ( (_Kf)2_ 1)~-li~ . (B.3) 

For (B.1) we have 

H~I)(Kx) ~ 2e-~'/3( 4~v2 "~'~ A'(e'2~ av'~) + ... }. (B.4) 
V2-- (Kx)7  ( V ~ 

Applying now the results of Section 4 we calculate explicitly the first term in the uniform 
expansion. From (4.8) we get: 

,;  p(x) ={i [1 -\h- JA 

={  2~[((Kx)2_v2)~_vtan_ 1 ( ( _ ~ ) z  i f  ] }-~. 

From (4.11) we get: 

-~ I p(x) ]~" 1F - p(x) ,1 ~ Bo(x ) = [h(x)p~(x)] ~ = ~2(x)_(m0z_] = ~--4~ L(Kx)Z-v " 

Therefore, the first order approximation is 

u(x, y; h)"~sin ( 7  0) Bo(x)A,(-K~ P) 

where p(x) and Bo(x) are given by (B.5) and (B.6). 
Comparing (B.3) and (B.5) we have: 

(a.5) 

(B.6) 

(B.7) 

(B.8) 
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Using this in (B.4) we get 

H(1)(Kx)~2.2~.e_~,/31 p(x)_ ~ (,(xt2-v J (B.9) 
k -  

Apart from a constant we are now able to identify (B.7) with (B.9), multiplied by sin (Onn/~). 
Hence we established the equivalence of the first term in the asymptotic expansion of the exact 
solution with the first term of the uniform Ansatz. 

The term K + appearing in (B.9) requires explanation : It arises from the fact that the uniform 
expansion of the Hankel function (B.1) has A i ( - e  2~i/3 K ~ p), while we used in the Ansatz (4.1) 
or (4.12) Ai(-K~p).  

Far from the turning point, the first term of our uniform-Ansatz (4.3) reduces to the first 
term of the ordinary-Ansatz. Recalling that 

1 
a i ( - . )  ~ sin 

and taking ~/= K~p (x), we get 

1 
a , ( -  K} p) ,,~ ~ sin (2 Kp} + Tt/4) . (B.a0) 

Comparing the eiconal equation (3.5) with that of (4.5) we see that 

= ( B . u )  

with the constant of integration chosen to be zero. 
Now Bo(x) is given by (4.11) 

p(x) _l § p(x)+(h(x)a,)_ ~ (B.12) Bo(x) = (h(x)px) -~ = h2(x)(1_q2)j = 

where q=nu/h(x) and the two last relations follow from (4.5) and (3.5) respectively. Using 
(3.10) we get: 

Bo (x) = const, p (x) ~- Ao (x). (B.13) 

Hence, from (B.10) and (B.11) we get: 

A,( - K ~ p) B 0 (x) ~ const. A o (x) e u~"(x)- i~/4. (B. 14) 

By this we established the equivalence of the first terms in both expansions, far from the 
turning point. 

Since equation (B.14) applies to the general surface h(x), it applies particularly to the 
canonical problem, which is a special case. 

It is impossible to continue the matching higher order terms of the expansion of the exact 
solution with corresponding terms of the asymptotic solution. To see this, let us focus our 
attention again on the first terms in both expansions. 

The exact solution is u = H(~ 1) (Kr)sin vO. For (Kr-v)  3 > Kr we have 

H~(Kr)~knKr/(2)~ [1 (Kr) 2] exp Kr { O - ~ K r r ]  J r -  

(B.15) 
which should be compared to (5.11). 

The first terms equivalence in both asymptotic expansions has been done under replacement 
of r in (B.15) by x. However, expanding r in a Taylor series we have : 

( 1 ~  ) 
r = x Z + Y 2 ~ x  1 + ~ - ~ +  . . . .  

Using this approximation in (B.15) we have, by repeated use of Taylor's expansion, 

Journal of Engineerin # Math., Vol. 6 (1972) 89-108 



108 

nI(r 1 -  = n K x  1 ( ' ! - - - -  

P. Rosenau, B. Rulf 

t y2 ) 
4 x 2 + higher order terms in y2/xZ . 

Using y = K Y  we get 

2 1 v , 2 l _ ( V ' ~ 2 ]  -+ y2 
 tr ( U r )  2 = \ K x j  j . 1 - 2 

We see that by extracting from (B.15) the Y dependence we get back to the (5.6) relation but 
now terms dependent on y add to higher order terms as in K. Therefore Aj(x, y) (j > 1) in the 
asymptotic theory cannot correspond to thej-th term of the exact solution expansion, and one 
has to add to it these extracts from the first term whose denominator contains K in the j-th 
power. 
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